Distributive law |
Left side A(B + C) = AB + AC
Right side (A + B)C = AC + BC
|
A(m ✕ n) B and C (n ✕ p)
A and B (m ✕ n) C(n ✕ p)
|
Associative law |
Addition (A + B) + C = A + (B + C)
Multiplication (AB)C = A(BC)
|
(m ✕ n)
(n ✕ n)
|
Scalar multiplication |
(kA)B = A(kB) = k(AB) |
A(m ✕ n) B(n ✕ p) k any number |
Commutative law |
Addition A + B = B + A
Multiplication not commutative
|
A and B (m ✕ n)
Because A∙B ≠ B∙A
|
Other algebric laws
(k, v are constants) |
0 + A = A |
k(A + B)= kA + kB |
1 · A = A |
(k + v)A = kA + vA |
0 · A = 0 |
k(vA) = (kv)A |
A + ( A) = 0 |
kA = 0 → k = 0 or A = 0 |
( 1)A = A |
|
|
Matrices powers
(c is constant) |
|