Units Converter Geometry Σ Math Physics Electricity
Two circles intersection calculator Print circle equation summary
Circles form:     (x-a)2 + (y-b)2 = r2
Circle 1: ( x + )2 + ( y + )2 = 2
Circle 2: ( x + )2 + ( y + )2 = 2
Circles form:     x2 + y2 + Ax + By + C = 0
Circle 1: x2 + y2 + x + y + = 0
Circle 2: x2 + y2 + x + y + = 0
Intersection coordinates (x , y):
Line passing through intersection points:
Distance between circles centers:
Equation of the line passing circles centers:
Common area between circles:
Circle 1 - x and y axis intercepts:
Circle 2 - x and y axis intercepts:
Notes:
             
Intersection summary Two circles tangency
Intercepts of a circle and the axis
JScript code to find intersection points
Two circles intersection equations summary Print two circles intersection equations summary
Two circles tangency conditions Print two circles tangency conditions
Description                   Condition
Circles inside circle
Circles equations:
(x + x1)2 + (y + y1)2 = r12
(x + x2)2 + (y + y2)2 = r22
Distance between circles centers  d  is:
d=√((x_1-x_2 )^2+(y_1-y_2 )^2 )
d < |r1 − r2|
Circles inner tangent
Inner tangency
d = |r1 − r2|
Circles intersects
Intersecting circles
|r1 − r2| < d < r1 + r2
Circles outer tangent
Outer tangency
d = r1 + r2
Two seperated circles
Intersecting circles
d > r1 + r2
Intercepts of a circle and the  x  and  y  axes Print two circles tangency
Circle equation:      (x − a)2 + (y − b)2 = r2
In order to find the circle intercepts with the  y  axis substitute the value
x = 0  in the circle equation and solve for y.
a2 + (y − b)2 = r2
y22by + a2 + b2 − r2 = 0
We got a quadratic equation with the  y  unknown.
x1,2 = 0 circle y axis intercepts
When     r > a    then 2 y axis intercepts points exists.
When     r = a    then the circle is tangent to the y axis.
When     r < a    then the circle does not intercept the y axis.
Apply the same steps to find the intercepts with the  x  axis there   y = 0
y1,2 = 0 circle x axis intercepts
When     r > b    then 2 x axis intercepts points exists.
When     r = b    then the circle is tangent to the x axis.
When     r < b    then the circle does not intercepts the x axis.
Circle equation:      x2 + y2 + Ax + By + C = r2
Substitute   x = 0   for intercepts with the  y  axis:         y2 + By + C = 0
x1,2 = 0 circle y axis intercepts
Substitute   y = 0   for intercepts with the x axis:         x2 + Ax + C = 0
y1,2 = 0 circle x axis intercepts
Example 1 - x and y axes intercepts Print example x and t intercepts
Find the x and y axis intercepts points of the circle:    x2 + y2 + 6x − 16 = 0.
For the  y  axis intercepts substitute   x = 0   into the circle equation:     y2 − 16 = 0.
And the  y  axis intercepts are:         y1 = 4         y2 = −4.
For the  x  axis intercepts substitute   y = 0   into the circle equation:     x2 + 6x − 16 = 0.
The solution of this quadratic equation are: x_1,2=(-6±√(36+64))/2=2,-8
And the x axis intercepts are:         x1 = 2         x2 = −8
Example 2 - x and y axes intercepts Print example x and t intercepts
Find the  x  and  y  axes intercepts points of the circle    (x − 4)2 + (y + 1)2 = 16.
Circle x y intercepts for the y axis intercepts insert the value:   x = 0   to get:
y2 + 2y + 1 = 0
The solution of this equation is: y_1,2=(-2±√(4-4))/2=-1
Because there is only one solution to this equation, the circle must be tangent to the y axis at point   (0 , −1).
For the  x  axis intercepts we insert the value:   y = 0   And get the quadratic equation:       x2 − 8x + 1 = 0.
The solution of this equation is:
x_1,2=(8±√(64-4))/2=7.873  ,   0.127
And the x axes intercepts are at:   (7.873 , 0)   and  (0.127 , 0).
Example 3 - Two circles overlapping area Print example x and t intercepts
Find the overlapping area between the two circles given by the equations:
  
(x + 3)2 + (y + 2)2 = 36     and    (x − 4)2 + (y + 2)2 = 16.
Two circles lapping area

First solution will be solved by geometric methode.

The blue area is a circle sigment of the left circle with cord equal to  2h  so the blue area is:

A(r,θ)=r^2/2 (θ-sin⁡θ)(1)

If the two circles are:    (x + a)2 + (y + b)2 = r12    and    (x + c)2 + (y + d)2 = r22

The distance between circles centers is: D=√((c-a)^2+(d-b)^2 )
D = A + B (2)
The heigh  h  can be foun from the triangles: h2 = r12 − A2 (3)
h2 = r22 − B2 (4)
From equations (3) and (4) we have r12 − r22 = B2 − A2 (5)

Substitute A and B from equation (2) into equation (5) to get:

A=(〖r_1〗^2-〖r_2〗^2+D^2)/2D B=(〖r_2〗^2-〖r_1〗^2+D^2)/2D
From triangle r1, h, A angle #θ1 can be found: θ_1=2 cos^(-1)⁡〖A/r_1 〗=2 cos^(-1)⁡〖(〖r_1〗^2-〖r_2〗^2+D^2)/(2Dr_1 )〗
The same way angle θ2 is: θ_2=2 cos^(-1)⁡〖B/r_2 〗=2 cos^(-1)⁡〖(〖r_2〗^2-〖r_1〗^2+D^2)/(2Dr_2 )〗
The blue segment area is found according to equation (1) A_blue=〖r_1〗^2/2 (θ_1-sin⁡〖θ_1 〗 )

And the total common area of two circles is:

A_common=A_blue+A_green=〖r_1〗^2/2 (θ_1-sin⁡〖θ_1 〗 )+〖r_2〗^2/2 (θ_2-sin⁡〖θ_2 〗 )
From the given circles the distance betweeb circles centers ia: D=√((-4-3)^2+(2-2)^2 )=7
A=(36-16+49)/(2∙7)=4.929 B=(16-36+49)/(2∙7)=2.071

And the angles θ1   and   θ2 are:

2θ_1=2 cos^(-1)⁡〖A/r_1 〗=2 cos^(-1)⁡〖4.929/6〗=1.213

2θ_2=2 cos^(-1)⁡〖B/r_2 〗=2 cos^(-1)⁡〖2.071/4〗=2.053

Another way to find the common area is by integration

From the equation of a circle we have: y=√(r^2-x^2 )
And the blue segment area is: A_blue=∫_(x_1)^(x_2)▒√(〖r_1〗^2-x^2 ) dx

From the sckech we see that the bounderies of the integration are x1 = A and x2 = r1

The solution is performed by trigonometric substitution methode and is equal to:

A_blue=∫_(x_1)^(x_2)▒√(〖r_1〗^2-x^2 ) dx

JScript code to calculate two circles intersection points Print jscript code to calculate two circles intersection points
//Definition of a circle object
function circle(a, b, r) { this.a = a; this.b = b; this.r = r; }
// This values should be declared as global variables
// so their values can be used without return their values
var x1, y1, x2, y2;
function calculateIntersection() {
// Calling function
var circle1 = new circle(2, 4, 5);
var circle2 = new circle(-1, 0, 3);
if (twoCirclesIntersection(circle1, circle2)) {
// If true - then the circles intersect
// the intersection points are given by (x1, y1) and (x2, y2)
..... Continue with desirable code .....
}
}
function twoCirclesIntersection(c1, c2){
//**************************************************************
//Calculating intersection coordinates (x1, y1) and (x2, y2) of
//two circles of the form (x - c1.a)^2 + (y - c1.b)^2 = c1.r^2
//                        (x - c2.a)^2 + (y - c2.b)^2 = c2.r^2
//
// Return value:   true if the two circles intersect
//                 false if the two circles do not intersect
//**************************************************************
var val1, val2, test;
// Calculating distance between circles centers
var D = Math.sqrt((c1.a - c2.a) * (c1.a - c2.a) + (c1.b - c2.b) * (c1.b - c2.b));
if (((c1.r + c2.r) >= D) && (D >= Math.abs(c1.r - c2.r))) {
// Two circles intersects or tangent
// Area according to Heron's formula
//----------------------------------
var a1 = D + c1.r + c2.r;
var a2 = D + c1.r - c2.r;
var a3 = D - c1.r + c2.r;
var a4 = -D + c1.r + c2.r;
var area = Math.sqrt(a1 * a2 * a3 * a4) / 4;
// Calculating x axis intersection values
//---------------------------------------
val1 = (c1.a + c2.a) / 2 + (c2.a - c1.a) * (c1.r * c1.r - c2.r * c2.r) / (2 * D * D);
val2 = 2 * (c1.b - c2.b) * area / (D * D);
x1 = val1 + val2;
x2 = val1 - val2;
// Calculating y axis intersection values
//---------------------------------------
val1 = (c1.b + c2.b) / 2 + (c2.b - c1.b) * (c1.r * c1.r - c2.r * c2.r) / (2 * D * D);
val2 = 2 * (c1.a - c2.a) * area / (D * D);
y1 = val1 - val2;
y2 = val1 + val2;
// Intersection points are (x1, y1) and (x2, y2)
// Because for every x we have two values of y, and the same thing for y,
// we have to verify that the intersection points as chose are on the
// circle otherwise we have to swap between the points
test = Math.abs((x1 - c1.a) * (x1 - c1.a) + (y1 - c1.b) * (y1 - c1.b) - c1.r * c1.r);
if (test > 0.0000001) {
// point is not on the circle, swap between y1 and y2
// the value of 0.0000001 is arbitrary chose, smaller values are also OK
// do not use the value 0 because of computer rounding problems
var tmp = y1;
y1 = y2;
y2 = tmp;
}
return true;
}
else {
// circles are not intersecting each other
return false;
}
}
Example 4 - Two circles tangency coordinate Print example x and t intercepts
Find the points of intersections of the circles   (x + 1)2 + (y + 1)2 = 4   and   (x − 4)2 + (y + 1)2 = 9.
Example 4
The term (y + 1)2 is the same in the equations of both circles. From the first circle we have:
(y + 1)2 = 4 − (x + 1)2
substitute this value to the first circle:
(x + 1) + 9 − (x − 4) − 4 = 0
After solving the equation we recieve   xt = 1
Now we can find the value of yt
And   yt = −1 or tangency at (1 , −1)